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89.1 Introduction to Graphs

A graph is a mathematical way of representing the concept
of a "network”.

Def 1. A graph G = (V, E) consists of V, a nonempty set of
vertices (or nodes), and E, a set of edges. Each edge has
either one or two vertices associated with it, called its
endpoints. An edge is said to connect its endpoints.

eg. G=(V, E), where
V={v,,Vy,..., V;}
E={{v.,V,}, {V1’V3}1 {VZ’VB}
Vg V, Ve {Va Vet {VaVst, {VaiVe}

/A% IRAZA AT

V4 Ve

Cho-3



" J
Def A graph in which each edge connects two

different vertices and where no two edges connect
the same pair of vertices is called a simple graph.

Def Multigraph:

simple graph + multiple edges (multiedges)
(FBERAF2 3 B 15:8)
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Def. Pseudograph:

simple graph + multiedge
+ loop

(a loop: ¢ )

eg.

Ch9-5



Def 2. Directed graph (digraph):
simple graph with each edge directed

o—»0

Note: ¢ is allowed in a directed graph
Note:

u Y u Vv

< ¥ <

The two edges (u,v),(u,v)  The two edges (u,v),
are multiedges. (v,u) are not multiedges.

Def. Directed multigraph: digraph+multiedges

Ch9-6



Table 1. Graph Terminology

Type Edges Multiple | Loops
Edges
(simple) graph undirected X X
Multigraph edge: {u,V} v %
Pseudograph v v
Directed graph directed X v
Directed multigraph | €d9€: (U,V) v v

Exercise: 3,5,6,7,9

Cho-7
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Graph Models

Example 2. (Acquaintanceship graphs)

We can use a simple graph to represent whether
two people know each other. Each person is
represented by a vertex. An undirected edge Is used
to connect two people when these people know each

other.

€y Jan Paula Todd Ka.mlesh

Amy
Lila Lizd Steve

Cho-8



Example 3. (Influence graphs)

In studies of group behavior it is observed that
certain people can influence the thinking of others.
Simple digraph = Each person of the group is
represented by a vertex. There is a directed edge
from vertex a to vertex b when the person a
Influences the person b.

€g Linda Brian

Deborah Fred Yvonne

Ch9-9



Example 9. (Precedence graphs and concurrent processing)
Computer programs can be executed more rapidly by

executing certain statements concurrently. It is important not to

execute a statement that requires results of statements not yet

executed.

Simple digraph = Each statement is represented by a vertex,

and there is an edge fromato b

If the statement of b cannot be

executed before the statement of a.

€9 Sy

S¢

1 2 Cho-10



Ex 13. The intersection graph of a collection of sets
A, A, ..., A Is the graph that has a vertex for each of
these sets and has an edge connecting the vertices
representing two sets if these sets have a nonempty
Intersection. Construct the intersection graph of the
following collection of sets.

(a) A, ={0,2,4,6,8} A, ={0,1, 2, 3, 4},
A;={1,3,5 7,9} A,={5,6,7,8,9} A: ={0, 1, 8, 9}.

G IAES

Cho-11
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§9.2 Graph Terminology

Def 1. Two vertices u and v in a undirected graph G
are called adjacent (or neighbors) in G if {u, v} Is an
edge of G.

Note : adjacent: a vertex connected to a vertex
Incident: a vertex connected to an edge

Def 2. The degree of a vertex v, denoted by deg(v),
In an undirected graph is the number of edges

Incident with It.
(Note : Aloop adds 2 to the degree.)

Ch9-12



Example 1. What are the degrees of the
vertices in the graph H ?

h Sol : eq(a)=4

eg(b)=6
eg(c)=1
eg(d)=5
eg(e)=6
eg(f)=0

C
C
C
C
C
C

Def. A vertex of degree 0 Is called isolated.

Ch9-13
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Thm 1. (The Handshaking Theorem)

Let G = (V, E) be an undirected graph with
e edges (I.e., |[E| =e). Then
> deg(v) = 2e

veV

Pf : &IN—1% edge {u, v} EREIF{E u IR v
&2 m—1{Edegree

Cho-14



The graph H has 11
¢ edges, and
% > deg(v) =22
° veV

Example 3. How many edges are there in a
graph with 10 vertices each of
degree six?

Sol :
10.6=2¢e = e=30

Ch9-15
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Thm 2. An undirected graph G = (V, E) has an even
number of vertices of odd degree.

Pf: Let V,={veV | deg(v) Is even},
V,={veV | deg(v) is odd}.

2e =) deg(v)+ > deg(v) = > deg(v) is even.

veV; VeV, VeV,

Exercise : 5

Def 3. G =(V, E): directed graph,

e=(u,v) e E:uis adjacenttov

v Is adjacent from u
u : initial vertex of e
v : terminal (end) vertex of e

® >0
U e V

Cho-16
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Def 4.
G = (V, E) : directed graph, veV
deg(v) : # of edges with v as a terminal.
(in-degree)
deg*(v) : # of edges with v as a initial vertex
(out-degree)

Example 4.
deg—(a)=2, deg*(a)=4
deg-(b)=2, deg*(b)=1
deg=(c)=3, deg*(c)=2
deg(d)=2, deg*(d)=2
deg(e)=3, deg*(e)=3
deg~(f )=0, deg*(f )=0

Cho-17



Thm 3. Let G =(V, E) be a digraph. Then
> deg(v) =) deg”(v) =|E|

veV veV

pf :
@M —{k edge ®—¢ deg*(u)}B/N 1
deg(v)i€0 1

Ch9-18
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(ex47_Em) A simple graph G=(V, E) is called
regular if every vertex of this graph has the

same degree. A regular graph is called
n-regular if deg(v)=n, VveV.

K, :
E IS 3-regular.

eg.

Exercise: 7, 49

Ch9-19
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Some Special Simple Graphs
Example 5.
The complete graph on n vertices, denoted
by K., Is the simple graph that contains
exactly one edge between each pair of
distinct vertices.

AN
1 Ky Ky K,

K

Note. K, Is (n—1)-regular, [V(K)|=n,
n
‘E(Kn)‘: 2) Chg-20
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Example 6. The cycle C,, n>3, consists of n
vertices v, v,, ..., v, and edges {v,,v,},

{VZ’V?)}’ e {Vn—l’vn}’ {Vn’vl}'
C3 C4 C5
Note C,is 2-regular, |V(C))|=n, |E(C,)|=n

Cho-21
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Example 7. We obtained the wheel W, when
we add an additional vertex to the cycle C,,

for n>3, and connect this new vertex to
each of the n vertices in C_, by new edges.

W, : We
Note. V(W )| =n+1, [E(W,)| = 2n,
W, is not a regular graph if n = 3. cno2




" A
Example 8. The n-dimensional hypercube, or
n-cube, denoted by Q,, Is the graph that has
vertices representing the 2" bit strings of length n.

Two vertices are adjacent if and only if the bit
strings that they represent differ in exactly one

bit position.
10 11 110 111
0 1 100
I:I ‘
Q Bk QB
0 o O 01| msaEdinE,
2 $n-dim
000 001
Qs l

Note. Q, is n-regular, [V(Q,)| = 2", |E(Q,)| = (2"n)/2 =2"-In
deg#@#®0 /2 Cho-23
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Some Special Simple Graphs

Def 5. A simple graph G=(V,E) Is called bipartite if
V can be partitioned into V, and V,, V,NV,=J,
such that every edge Iin the graph connect a
vertex in V; and a vertex in V..

Example 9.

~ Cg IS bipartite.

Ch9-24
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Example 10. Is the graph G bipartite ?

a b a c
0
C e
> °
f
f V/d d
9
e
G

Yes |

Ch9-25



Thm 4. A simple graph is bipartite if and only if it is
possible to assign one of two different colors to
each vertex of the graph so that no two adjacent
vertices are assigned the same color.

Example 12. Use Thm 4 to show that G Is bipartite.
la lp

G Exercise : 23, 24, 25

Ch9-26
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m Example 11. Complete Bipartite graphs (K, ,)

AN PR

K, 3 Ks,3

Note. |V(K, )| = m+n, |E(K,, )| = mn,
Kmn IS regular if and only if m=n.

Cho-27
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New Graphs from Old

Def 6. A subgraph of a graph G=(V,E) is a
graph H=(W, F) where Wc Vand F c E.

(CE=

L F 223E

1 W 2 RIE)

Example 14 A subgraph of K.

N

subgraph of K¢

Ch9-28



Def 7. The union of two simple graphs
G,=(V,, E,) and G,=(V,, E,) Is the simple graph

G,uUG,=(V,uV,, E,UE))
Example 15.

=

C

G,UG,

a b C a b C
®

G, I V G, /\I
@

d e d f

Exercise : 51

Ch9-29
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(ex35_Em) A simple graph G=(V, E) is called
regular If every vertex of this graph has the

same degree. A regular graph is called
n-regular if deg(v)=n, VveV.

K, :
E IS 3-regular.

Exercise : 5,7, 21, 23, 25, 35, 37

eg.

Ch9-30
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§9.3 Representing Graphs and
Graph Isomorphism
HAdjacency list

Example 1. Use adjacency lists to describe the
simple graph given below.

' Sol : | Vertex | Adjacent Vertices

a b,c.e
a C b a
C a,d.e
d c.e
€ d
e a,c,d

Cho-31
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Example 2. (digraph)

Exercise : 3

Initial vertex | Terminal vertices
a b,c,d,e
b b,d
C a,c,e
d
e b,c,d

Ch9-32
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¥ Adjacency Matrices

Def. G=(V, E) : simple graph, V={v,,v,,....v.}. (igs:zmz)
A matrix A is called the adjacency matrix of G
It A=[a;],., » where a; = { 1, 1t {v;,v}eE,

0, otherwise.
Example 3.
a b c d b d ¢ a
a b a[0 1 1 1 bro 1 1 1
d
bl 0 1 1 1 001
A1: AZ:(:
¢/l 1 0 0 1 001
c d g1 1 0 0] 1 1 1 0]
Note:

1. There are n! different adjacency matrices for a graph with n vertices.

2. The adjacency matrix of an undirected graph is symmetric.
Ch9-33



Example 5. (Pseudograph) (¥EfER 20,156 E.)
a b c d
a b al0 3 0 2]
> b3 0 1 1
A= clo1 1 2
d Q d|2 1 2 0]

Def. If A=[a;] Is the adjacency matrix for the directed
graph, then

1, if e——e
3 :{ Vi Vi UERERER)

0 , otherwise

Exercise: 7,14, 17, 23

Ch9-34
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*Isomorphism of Graphs

U, u, Vi v,
I I I><I G is isomorphic to H
Us u, Vs Vs

G H

Def 1.
The simple graphs G,=(V,,E,) and G,=(V,,E,)
are isomorphic if there Is an one-to-one and

onto function f from V, to V, with the property
that a~b in G, Iff f(a)~f(b) In G,, Va,beV,

fis called an isomorphism.

Ch9-35



Example 8. Show that G and H are iIsomorphic.

U, I
Us

4 3

G
Sol.

The function f with f(u,) = vy, f(u,) = vy, f(U3) = vs,
and f(u,) = v, IS a one-to-one correspondence

between V(G) and V(H).

I u, VlI I v,
u Y Vy

H

>:|somorphism graphs W

5 (1) M

JHIBLER

(2) #HEHZEE  (3) HHREIRIdegree i,

Ch9-36



XETE_E, FIETEMREisomorphickIfIE— &R ER T
ZfE, MBEEERETER,

Example 9. Show that G and H are not isomorphic.

N D

G H degree =1 HIBk, HiZE

Sol

Ch9-37



Example 10.
Determine whether G and H are isomorphic.
ae b S ot
W X
Z y
d ®cC v ®,
G H

Sol : +~ G & degree & 3 BIBEHEd, h, f, b
e ek 4-cycle
{B H = degree %&389%6s, w, z, v Al #z Rk 4-cycle
~ A~ isomorphic.

Hi% G thdeg =3B, FE2EFET H—E deg = 3 BIE,
{E H & deg = 3 RIBLSS:E2H0E T 2 {& deg = 3 BYES

Ch9-38
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Example 11. Determine whether the graphs G and H
are isomorphic.

Sol:

f(uy)=vg, T(Up)=V3, T(Ug)=V,, T(uy)=vs, T(Us)=Vy, T(Ug)=V,
=Yes

Exercise : 37, 39, 40

Ch9-39
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Ex44. Determine whether the graphs G and H are
Isomorphic.

It — [El#B B vertex-transitive, EEZEMAERE—HKH, WEEu, Ky BT
v, 8495 B neighboral LLERERS-cycle, 1Bu,MIA1T, 3 =isomorphic

Ch9-40
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§9.4: Connectivity

Def. 1,2 :

In an undirected graph, a path of length n from u
to vis a sequence of n+1 adjacent vertices going

from vertex u

to vertex v.

(e.g., P:u=xg, Xy, Xy, ..., X,=V.) ( P has n edges.)
Def: (EAE FHFK—E)
pathtH I BE RE ARl 48

trail: FLEFELE

= 1R YIRS GBI E

walk: JLEF AR i2 EE R IRE

Example

\Y

<

X

W

y

= 12)

path: u, v,y
trail: u, v, w, y, v, X, y
walk: u, v, w, v, X, v, y

Cho-41
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Def:
cycle: path with u=v
circult: trail with u=v
closed walk: walk with u=v

Example
G v w
cycle: u, v, y, X, u
u@ trail: u, v, w, y, v, X, U
walk: u, v, w, v, X, v, y, X, U
X y

Exercise : 17
Ch9-42




Paths in Directed Graphs

The same as Iin undirected

graphs, but the path
must go Iin the direction of the arrows.

Connectedness in Undirected Graphs

Def. 3:

An undirected graph is connected (&) if there
IS a path between every pair of distinct vertices in

the graph.
Detf:

Connected component: maximal connected

subgraph. (—1{& 4~ & & [E

= 7

=

5 174 {@ component)

Ch9-43



Example 6 What are the connected
components of the graph H?

Ch9-44



Def:
A cut vertex separates one connected component
Into several components If it Is removed.
A cut edge separates one connected component
Into two components if it Is removed.

Example 8. Find the cut vertices and cut edges in the
graph G.

Sol:
d f g cut vertices: b, c, e
G 171 cut edges:
{a, b}, {c, e}

Exercise : 29,31, 32

Ch9-45
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Connectedness In Directed Graphs

Def. 4: A directed graph is strongly connected if
there Is a path from a to b for any two vertices a, b.
A directed graph is weakly connected if there is a
path between every two vertices in the underlying
undirected graphs.

Example 9 Are the directed graphs G and H strongly
connected or weakly connected?

a b a b
€ d € d

strongly connected weakly connected cho-46
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Paths and Isomorphism

Note that connectedness, and the existence of a
circuit or simple circuit of length k are graph
Invariants with respect to isomorphism.

Example 12. Determine whether the graphs G and
H are isomorphic.
U, V1

U, Us

Sol: No, RIG2zB =A%, HE Cho-47
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Example 13. Determine whether the graphs G and
H are iIsomorphic.

u
Sol. ° Ha V4 V3

Both G and H have 5 vertices, 6 edges, two vertices of
deg 3, three vertices of deg 2, a 3-cycle, a 4-cycle, and
a 5-cycle. = G and H may be isomorphic.

The function f with f(u,) = vy, f(u,) =v,, f(u;) = v;,

f(u,) = v, and f(us) = v; IS a one-to-one correspondence
between V(G) and V(H). = G and H are isomorphic.

Exercise: 19, 20

Ch9-48
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Counting Paths between Vertices

Theorem 2:
Let G be a graph with adjacency matrix A with respect to
the ordering v, v,, ..., v,. The number of walks of length r
from v; to v; Iis equal to (A"); ;.

Proof (EF&HEEW]%‘%EU?)A

A j A2
a b X j
i S R | -
| 1 1 : = |- @

Ch9-49



Example 14. How many walks of length 4 are
there from a to d in the graph G?

a b
Sol.
The adjacency matrix of G G ><
(ordering as a, b, c,d) Is q x
a b c¢c d
a0 1 1 0] 8 0 0(8)
b|1 0 0 1 . 0 880
Al o001 = T loss o = 8
4]0 1 1 0] 8 0 0 8]
Q: Hi8{E ?
a-b-a-b-d, a-b-a-c-d, a-c-a-b-d, a-c-a-c-d, Exercise * 17

a-b-d-b-d, a-b-d-c-d, a-c-d-b-d, a-c-d-c-d cho.50



89.5: Euler & Hamilton Paths

Graph Theory B9%E;E

m 1736, Euler solved the Konigsberg Bridge
Problem (t#&fi%E)

=+
;e
=
O

@m

Q: REHIE—

=R, AILLRE
EiE— K.
ZlF2 2L ?

Cho-51



Konigsberg Bridge Problem

B

Q: BEFAE—EER FLEABKRE—R LEFFEEL?

Ans: Rl & RIEB—ER, AMEZRR—IRELEAZXRE BHA
H—I%i2EE FTURBEREM - REEAE—HE,

= BE L EEMNEBWARBETIT
= BEENFHE

Ch9-52
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Def 1.
An Euler circuit in a graph G is a simple circuit
containing every edge of G.

An Euler path in G Is a simple path containing
every edge of G.

Thm. 1.
A connected multigraph with at least two vertices
has an Euler circuit if and only if each of its
vertices has even degree.

Thm. 2:
A connected multigraph has an Euler path (but
not an Euler circuit) if and only if it has exactly 2
vertices of odd degree.

Ch9-53



Example 1. Which of the following graphs have
an Euler circuit or an Euler path?

®
d C d C C d e
Euler circuit none Euler path

Exercise: 3, 5, 21, 26, 28

Ch9-54
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Algorithm 1 (Constructing Euler Circuits.)
Procedure Euler(G: connected multigraph with all vertices of

even degree)

circuit ;= a circuit in G beginning at an arbitrary chosen vertex
with edges successively added to form a path that returns to
this vertex

H := G with the edges of this circuit removed
while H has edges
begin
subcircuit :=a circuit in H beginning at a vertex in H that
also is an endpoint of an edge of circuit

H := H with edges of subcircuit and all isolated vertices
removed

circuit := circuit with subcircuit inserted at appropriate
vertex

end {circuit is an Euler circuit}

Ch9-55




V, Step 1: find the 1%t circuit

C:Vy, Vy, Vg, Vy, Ve, Vg

V3
Step2. H=G-C=,
find subcircuit

SC: V3, Vs, Vg, V3

Step 3:
C=CuSC,
H=G - C =, stop
C: vy, Vy, Vg, Vg, Vg, V3, Vg, Vg, Vy

\ -

SC embedded Exercise : 7| cross
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Hamilton Paths and Circuits

Def. 2: A Hamilton path is a path that traverses
each vertex in a graph G exactly once.
A Hamilton circuit is a circuit that traverses each
vertex in G exactly once.

Example 1. Which of the following graphs have
a Hamilton circuit or a Hamilton path?

a b
a b de b @
Gl G2 'A
e C
d C ‘d c e %
d G,

——0C

Exercise : 42, 43

Hamilton circuit: G, Hamilton path: G,,G,

Cho-57
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Thm. 3 (Dirac’s Thm.):
If (but not only If) G Is a simple graph with n>3
vertices such that the degree of every vertex in
G Is at least n/2, then G has a Hamilton circuilt.

Example

each vertex has deg > n/2 =3.5
c g —=Hamilton circuit exists
0 : a,ceqg,bdfa

Ch9-58



Thm. 4 (Ore’s Thm.):
If G Is a simple graph with n>3 vertices such that
deg(u)+deg(v) = n for every pair of nonadjacent
vertices u and v, then G has a Hamilton circulit.

Example
b > each nonadjacent vertex pair
has degsum=>n=7
c ¥ —=Hamilton circuit exists

a0 : a,d,fecb,g a

Ch9-59
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89.6: Shortest-Path Problems

Def:

1. Graphs that have a number assigned
to each edge are called weighted graphs.
2. The length of a path in a weighted graph is

the sum of the weights of the edges of this
path.

Shortest path Problem:

Determining the path of least sum of the

weights between two vertices in a weighted
graph.

Ch9-60



Example 1. What is the length of a shortest path
between a and z in the weighted graph G?

Sol. (1) = @™\ =

Z =4 d
4
3 4
(3) a< (4)
5 a
® 2 L.:5
d 3 e
BB step &P 1E R EEEERIBL

HaRint, WHaE HE S 6
shortest pathFi k| T () 3 ®
/ length=6
2 1
d 3 e

Cho-61
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D|J kstra’s Al gor 11 h m(ind the length of a shortest path from a to z)

Procedure Dijkstra(G: weighted connected simple graph,
with all weights positive)

{G has vertices a = v, vy, ..., vV, = z and weights w(v;, v;)

where w(v;, v;) = oo if {v,, J} IS not an edge in G}
fori:=1ton

L(_V‘) = This algorithm can be extended
L(a) :=0 to construct a shortest path.
S=0
whilez ¢ S Itk B N — & 4 25
begin foEk v BIRT— B U

previous(v) =u
EEAREZBB 2 EHitrace

S:=S U {u}
for all vertices v not in S /

If L(u) +w(u, v) <L(v) then L(v) := L(u) +w(u, v) v
end {L(z) = length of a shortest path from a to z}

u :=avertex not in S with L(u) minimal

Ch9-62
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Example 2. Use Dijkstra’s algorithm to find the
length of a shortest path between a and z in the

weighted graph.

C
2(a)  10(d)

Ch9-63



(RIEREZE—EE)

3(c) 3(c)
b 5o b 5o
—
C 10 € C 10 €
2(a)  10(d) 2(a)  10(d)
3(c) b
b 5o

— path: a,c, b, d, e,z
length: 13

C 10 €
2(a)  10(d)

Exercise : 3 Cho-64
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Thm. 1

Dijkstra’s algorithm finds the length of a shortest
path between two vertices in a connected simple

undirected weighted graph.

Thm. 2
Dijkstra’s algorithm uses O(n?) operations

(additions and comparisons) to find the length of
a shortest path between two vertices in a
connected simple undirected weighted graph
with n vertices.

Ch9-65



Floyd’s Algorithm (find the distance d(a, b) Va, b)

Procedure Floyd(G: weighted simple graph)

{G has vertices vy, ..., v, and weights w(v;, v;) with

w(v;, v;) = oo If {v;, v;} Is not an edge}

fori:=1ton i
forj:=1ton
fori:=1ton
forj:=1ton HEEy, BOEM B
' o vi, v, BRIIEEBE S A E R A
fork:=1ton A v T

if d(v;, v;) + d(v;, vi) < d(y;, v,)
then d(v;, v) == d(v;, v;) + d(v;, Vi)
{d(v;, v;) is the length of a shortest path between v; and v;}

This algorithm cannot be used to
construct shortest paths.

Exercise : 21

Ch9-66
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The Traveling Salesman Problem: (f91)
A traveling salesman wants to visit each of n cities
exactly once and return to his starting point. In
which order should he visit these cities to travel
the minimum total distance?

Example (starting point D)

S D>T—>K—->G—>S —»D: 458
D>T—>5—>G—>K—>D: 504
D>T—>5—>K—->G—D: 540

K™ 133 T

= FEcomplete weighted graph _E3#k minimum weight Hamiltonian circuit.

I~ fFfEpolynomial time alg. 434789 algorithm R BTl 7 Cho-67
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§89.7: Planar Graphs

Def 1.

A graph is called planar if it can be drawn in the
plane without any edge crossing. Such a drawing

IS cal

Examp

ed a planar representation of the graph.

e 1: Is K, planar?

- K4 Is planar

K, drawn with
NO Crossings

Ch9-68



Example 2: Is Q; planar?

. Qg IS planar

Qs Q, drawn with no crossings

Example 3: Show that K; 5 Is nonplanar.
¢ Sol.a R

< T

{£1—IEI£EFI, aebd%‘llmcycle, ~EcC T:E"ﬂ[iﬂﬂreglon, IR
it 1% < m U1 Bk A& region B f IMAMEERREE
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Euler’s Formula

A planar representation of a graph splits the plane
Into regions, including an unbounded region.

Example : How many regions are there in the
following graph?

Ry

R,

R

Rs

RG
Sol. 6

Thm 1 (Euler’s Formula)
Let G be a connected planar simple graph with e
edges and v vertices. Let r be the number of regions
In a planar representation of G. Thenr =e—v +2.

Cho-70
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Example 4: Suppose that a connected planar
graph has 20 vertices, each of degree 3. Into
how many regions does a representation of this
planar graph split the plane?

Sol.
v =20, 2e =3x20=60,e =30 _
r=e-v+2 = 30-20+2 = 12 =xercise: 13
Corollary 1

If G Is a connected planar simple graph with e
edges and v vertices, where v > 3, then e < 3v — 6.

Example 5: Show that K Is nonplanar.

Sol.
v=5e=10, but3v-6=09.
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Corollary 2
If G Is a connected planar simple graph, then G
has a vertex of degree <5.

pf: Let G be a planar graph of v vertices and e edges.

If deg(v) > 6 for every veV(G)

= Z deg(v) > 6v

veV (G)

— 28>0V —><« (e <3v-10)
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Corollary 3
If a connected planar simple graph has e edges
and v vertices with v > 3 and no circuits of length
three, then e <2v -4,

Example 6: Show that K; ; Is nonplanar by Cor. 3.

Sol.
Because K, ; has no circuits of length three,

andv=6,e=9, bute=9>2v-4.

Cho-73



"
Kuratowski’s Theorem

If a graph is planar, so will be any graph obtained by
removing an edge {u, v} and adding a new vertex w

together with edges {u, w} and {v, w}.

u W V
® @ .

Such an operation is called an elementary subdivision.

Two graphs G, = (V, E)), G,=(V,, E,) are called
homeomorphic if they can be obtained from the same
graph by a sequence of elementary subdivisons.
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Example 7: Show that the graphs G,, G,, and G,
are all homeomorphic.

a b a b a b
h i
J
g g
C d e C d e C d e

Sol: all three can be obtained from G,

Exercise: 21

Thm 2. (Kuratowski Theorem)
A graph is nonplanar if and only If it contains
a subgraph homeomorphic to K;; or K.
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Example 9. Show that the Petersen graph is not

planar.
Sol:
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§9.8: Graph Coloring

Def. 1:

A coloring of a simple graph is the assignment of a
color to each vertex of the graph so that no two
adjacent vertices are assigned the same color.

Example:

5-coloring 3-coloring

BB B AT o
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Def. 2:

The chromatic number of a graph is the least
number of colors needed for a coloring of this
graph. (denoted by y(G))

Example 2: 4 (K¢)=5
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Example: x(K, ;) = 2.

Note: y(Kyn) =2
Note: If G Is a bipartite graph, (G) = 2.
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Example 1. What are the chromatic numbers of the
graphs G and H?

2 3
1 . 1 2 g
3 2
G H
Sol: G has a 3-cycle Sol: any 3-coloring for
= %(G)=3 H—{(a,g)} gives the
G has a 3-coloring same color to a and g
= 1(G)<3 = x(H)>3

= v (G)=3 4-coloring exists = y(H)=4
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Example 4: 4(C,) = 2 1f n IS even,
3if nis odd.

1 2

C, is bipartite
when n is even. 3 1

2

Thm 1. (The Four Color Theorem)
The chromatic number of a planar graph is no
greater than four.

Corollary
Any graph with chromatic number >4 is nonplanar.

Exercise: 8,9, 15 Cho-81




